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Abstract The optimal control of the steady-state temperature distribution in radiating panels
using control heat sources is considered. The problem has important applications in the thermal
control of space structures. A mathematical model leads to an elliptic nonlinear optimal control
problem. A numerical optimal control method, based on finite element (FE) discretization and
sequential quadratic programming (SQP), is employed. Results are presented for some specific
examples.

1 Introduction
The thermal control of space structures is a very important ingredient in space
structure design and analysis, from two main reasons. First, space structures
such as satellites sometimes carry instrumentation which is effective only in a
certain range of temperatures. For example, some batteries cannot function
when their temperature is below zero Celsius (Guelman et al., 2000). Second,
variations in the temperature field generate an elastic deformation in the structure
which must satisfy the allowed working conditions of various mounted orien-
tation-sensitive instruments and antennas. For these reasons, space structures
sometimes require an especially detailed and accurate thermal control. Recent
work on various aspects of optimal thermal control of space structures includes
Lu and Nan (1993), Zhu et al. (1995) and Mattei (1998). The heat sources in this
case are solar radiation, radiation from other planets, and heat generated inside
the structure. Space structures emit thermal radiation to the environment,
which is a significant nonlinear mechanism of heat transfer in space.

Various finite element (FE) schemes for the solution of thermal control
problems have been used. Work that focuses directly on space structures
includes Warren and Arelt (1991) and Chin et al. (1992). Related FE schemes for
other applications have been proposed, e.g. in Gunzberger et al. (1993), Kim et al.
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(1996), Ravindran (1997), Suzuki et al. (1996) and Manservisi (2000). The main
body of work in this area is concerned with the control of time-dependent
variables, and assumes linear governing equation and boundary conditions. On
the other hand, in the present paper we consider the steady-state (elliptic)
nonlinear optimal thermal control of a structure which radiates heat to the
environment, such as a panel in a space structure (Givoli and Rand, 1995).

Most of the FE optimal control formulations that have been proposed
involve the “adjoint state”, which appears when the Pontryagin maximum
principle is employed (Knowles, 1981). The problem’s variables include, in
addition to the primary state variables, the adjoint variables. This leads to a
mixed FE formulation involving a linear algebraic system of dimension 2N y,
where N y is the number of primary degrees of freedom (see e.g. Gunzberger
et al., 1991; Grandhi et al., 1993; Hou and Turner, 1995; Stavroulakis, 1995).
Recently, a new general framework has been developed for the FE solution of
optimal control problems governed by nonlinear elliptic partial differential
equations (Givoli, 1999; Givoli and Patlashenko, 2000). In contrast to the FE
schemes mentioned above, the approach in Givoli (1999) is a direct one, which
does not involve adjoint variables. Computationally, this has the effect of
leading to a simpler formulation and reducing the number of variables by a
factor of two. The solution of the final discrete minimization problem is
performed via sequential quadratic programming (SQP). This formulation does
not employ the standard tools of classical control theory, but fits naturally into
the framework of computational continuum mechanics.

In Givoli (1999) the general numerical procedure has been developed. In
addition, the method has been applied to a simple scalar one-dimensional model
problem. In Givoli and Patlashenko (2000) the method was applied to problems
in nonlinear elasticity. In this paper we adapt and apply the FE–SQP optimal
control methodology to the problem of optimal thermal control of a two-
dimensional radiating panel. Temperature distribution in the panel is
controlled via concentrated or distributed control heat sources which must
satisfy given constraints.

Following is the outline of this paper. In Section 2 we give the detailed
statement of the optimal control problem on the continuous level. In Section 3
we then introduce the FE–SQP scheme for the approximate solution of this
problem. We discuss the computational aspects of the method, as well as the
simplifications associated with the special unconstrained case. We present
numerical results for specific examples in Section 4, and conclude the paper
with remarks in Section 5.

2 Statement of the optimal-control problem
Let V be a finite two-dimensional spatial domain representing a thin panel, and
let G be its closed one-dimensional boundary (see Figure 1). Let y(x ) be the
unknown temperature field in the plate. The panel’s surface is exposed to
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incoming heat flux. The panel conducts heat, exchanges heat with other parts
of the structure through G, and radiates heat out through the surface. The
material the panel is made of is assumed to be linear (i.e. its thermal
conductivity and radiation coefficient do not depend on temperature) but may
be thermally anisotropic. We ignore transient response and consider the
steady-state temperature distribution in the panel.

The statement of the problem consists of three ingredients:

(1) governing equation and boundary conditions,

(2) objective functional, and

(3) constraints on the control.

2.1 Governing equation and boundary conditions
The governing equation and boundary conditions are

27�ðk7yÞ þ CRy4 ¼ f ðxÞ þ bðxÞuðxÞ in V; ð1Þ

y ¼ g on Gg; ð2Þ

k7y�n ¼ h on Gh: ð3Þ

Here k = [kij] is the given thermal conductivity tensor for the panel’s material,
CR is the given radiation coefficient, f is the given incident flux on the panel’s
surface, Gg and Gh are, respectively, the parts of G on which temperature and
normal heat flux are prescribed, n is the normal unit vector pointing out of Gh,
and g and h are given functions. The term b(x )u(x ) in the right side of (1) is the
control term; u(x ) is an unknown control flux, and b(x ) is a given characteristic
function which assumes the values 0 and 1 only. The support of b, namely the
region where b = 1, is denoted Vc and is called the control-flux region (see
Figure 1). Typically Vc is much smaller than the entire domain V. The two

Figure 1.
Setup for the optimal
control problem of a

radiating panel
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primal unknowns of the problem are the temperature y(x ) for x [ V and the
control flux u(x ) for x [ Vc.

2.2 Objective functional
We consider the quadratic objective functional

C½y� ¼

Z
V

aðxÞðyðxÞ2 y0ðxÞÞ
2dx; ð4Þ

where a(x ) $ 0 and y0(x ) are given functions. The interpretation of (4) is that
the temperature distribution y(x ) is to be as close as possible to the given
reference temperature function y0(x ), where the relative importance of this
requirement in various locations in V is determined by the given weighting
a(x ). The closeness of y to y0 is enforced in (4) in the least-square sense. The
simplest case is of course a(x ) ; 1 and y0(x ) = const., i.e. the temperature in
the whole panel is to be as close as possible to the constant temperature y0.

2.3 Constraints on the control
We defined bounds which limit the size of the control flux u, i.e.

u2du ¼ ujuminðxÞ # uðxÞ # umaxðxÞ; forx2Vcg; ð5Þ

where umin(x ) and umax(x ) are given functions. (Either one may attain an
infinite value if one of the constraints is to be removed.) One may be interested
also in the unconstrained case, which simplifies the formulation. We shall relate
to this case later when considering the numerical optimal control scheme.

2.4 Statement of the problem
The optimal control problem to be solved is: find y(x), x [ V and u(x), x [ Vc,
which satisfy the nonlinear equation (1), the boundary conditions (2) and (3),
and the constraint (5), such that C[y] given by (4) is minimized.

2.5 Design and closed-loop control
The global design problem involves two aspects that have not been dealt with
in the statement of the problem above: (a) determining the location and shape of
the control region Vc (or equivalently the characteristic function b(x ) in (1));
and (b) closing the control loop. We shall not deal with these two important
issues in the present paper. However, the optimal-control scheme proposed here
can serve as the basis for a control-location optimization scheme on one hand,
and for closed-loop control design on the other hand. The optimal location of
the controllers can also be performed manually, using the proposed optimal-
control scheme in a repetitive manner. In other words, the analyzer may try a
few reasonable control configurations (i.e. a few choices for Vc), apply the
scheme developed here for each of them separately to obtain the control
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functions, temperature distribution and cost C[y ] in each case, and finally
choose the one configuration which yields the lowest value of the cost.

3 Computational scheme
3.1 Finite element discretization
The Galerkin finite element (FE) method is applied to the problem under
consideration. Both y and u are approximated via FE shape function
expansions, i.e.

yðxÞ . yhðxÞ ¼
I2Ey

X
dIcI ðxÞ; ð6Þ

uðxÞ . uhðxÞ ¼
A2Eu

X
UAfAðxÞ: ð7Þ

Here Ey and Eu are the sets of temperature nodes and control nodes, cI and fA

are the temperature and control shape functions, and dI and UA are the
temperature and control nodal values, respectively. The global vectors whose
entries are all the nodal temperatures and all control fluxes are denoted d and
U, respectively. We denote the total number of temperature degrees of freedom
by N y, and the total number of control degrees of freedom by N u.

In order to obtain a finite element discretization for (1)–(3) we first write
these equations in a weak form:

aðw; yÞ � ðw; f Þ þ ðw; hÞG þ bðw; uÞ: ð8Þ

Here,

aðw; yÞ

Z
V

½7w�k7y þ wCRy4�dV; ð9Þ

ðw; f Þ ¼

Z
V

wfdV; ð10Þ

ðw; hÞG ¼

Z
Gh

whdG; ð11Þ

bðw; uÞ ¼

Z
V

wbudV ;
Z
Vc

wudV: ð12Þ

We seek y [ S, and we require that (8) hold for all weighting functions
w [ S0, where S is the appropriate trial space and S0 is its homogeneous
counterpart (see Hughes, 1987).
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Applying the approximations in (6) and (7) to the weak form of the problem
results in a system of nonlinear algebraic equations, of the form

G0ðdÞ ¼ F þ QU : ð13Þ

Here G0 is the vector of “internal fluxes” (which is a nonlinear function of the
temperature vector d ), and F is the background thermal load vector, both
standard in nonlinear FE analysis. Their expressions are given by

G0 ¼ ðG0ÞI g ðN y £ 1Þ ðG0ÞI ¼ aðcI ; y
hÞ ; aðcI ;

J2Ey

X
dJcJ Þ; ð14Þ

F ¼ FI g ðN y £ 1Þ FI ¼ ðcI ; f Þ þ ðcI ; hÞG: ð15Þ

Of course, in practice these vectors (and other global arrays appearing below)
are calculated by applying the assembly operation to the analogous element-
level arrays. The term QU in the right side of (13) is the control flux
contribution to the thermal equilibrium equations. Note that both d and U are
unknown. The matrix Q has the form

Q ¼ ½QIB� ðN y £ N uÞ QIB ¼

Z
V

cIbfBdV ;
Z
Vc

cIfBdV: ð16Þ

We substitute (6) into (4), and after some algebra obtain the discrete objective
function,

C h½d ;U � ¼ d TMd 2 2L Td þ c0; ð17Þ

where

M ¼ ½MIJ � ðN y £ N yÞ MIJ ¼

Z
V

cIacJ dx; ð18Þ

L ¼ LI g ðN y £ 1Þ LI ¼

Z
V

cIay0dx: ð19Þ

In (17), the superscript T denotes transposition, and c0 is a constant scalar
which does not affect the minimization of C h and therefore can be ignored.

The discrete counterpart of the constraint (5) is

TU # Z ; ð20Þ

where T is a given constant transformation matrix, Z is a given constant bound
vector, and the vector inequality is to be interpreted in the component-wise
sense, i.e. a # b means ai # bi for all i.
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Note that the discrete optimal control problem can be posed as follows: find
d and U which satisfy the nonlinear system (13) and the constraint (20), such
that C h given by (17) is minimized.

3.2 Sequential quadratic programming
The Newton iteration procedure is now applied to the nonlinear system (13).
We denote the vector d at iteration i by d (i ). At iteration i+1 the solution vector
is updated via

d ðiþ1Þ ¼ d ðiÞ þ Dd ðiÞ ð21Þ

The increment Dd (i ) is found by solving the linear system of equations,

K ðiÞDd ðiÞ ¼ R ðiÞ ð22Þ

Here K (i ) is the tangent stiffness (or thermal conductivity) matrix,

K ðiÞ ;
›G0ðdÞ

›d

����
d¼d ðiÞ

ð23Þ

and R (i ) is the residual vector obtained from (13),

R ðiÞ ¼ F 2 G0ðd
ðiÞÞ þ QU : ð24Þ

Equations (21), (22) and (24) can be written as

d ðiþ1ÞðU Þ ¼ d̂ðiÞ þ ðK ðiÞÞ21QU ð25Þ
where

d̂ðiÞ ¼ d ðiÞ þ ðK ðiÞÞ21ðF 2 G0ðd
ðiÞÞÞ: ð26Þ

The vector d̂ðiÞ as defined by (26) is the current solution with no control.
Now we substitute (25) into (17), and after some algebra obtain,

�Ch½U � ¼ U TP ðiÞU 2 2U TB ðiÞ þ const: ð27Þ

where

P ðiÞ ¼ A ðiÞTMA ðiÞ ðN u £ N uÞ ð28Þ

A ðiÞ ¼ ðK ðiÞÞ21Q ðN y £ N uÞ ð29Þ

B ðiÞ ¼ A ðiÞTðL 2 M d̂ðiÞÞ ðN u £ 1Þ ð30Þ

From (27) and (20) we then obtain the quadratic programming (QP) problem:

Given d ðiÞ; find
TU#Z
min ½U TP ðiÞU 2 2U TB ðiÞ�: ð31Þ
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The QP problem (31) can be solved using a standard QP algorithm (Gill et al.,
1981; Luenberger, 1984). In the numerical examples of the next section, we shall
use the Goldfarb–Idnani QP algorithm (Goldfarb and Idnani, 1983) for this
purpose.

To summarize, the proposed method reduces the original optimal control
problem into a sequence of QP problems, one in each Newton iteration. These
problems are in turn solved by applying a standard QP algorithm. The whole
solution process is described in ‘‘Solution procedure for the optimal control
problem using the FE-SQP approach’’ below.

3.3 Computational aspects
We now make a few remarks regarding the computational aspects of this
formulation.

Remark 1. Equations (26) and (29) involve the inverse of the tangent
stiffness matrix K (i ). In practice, the inverse is never actually computed, but
K (i ) is factorised, and then back substitution is performed to obtain
K 2 1(F 2 G0) in (26) and K 2 1Q in (29). The latter involves back
substitution for each column of the “right-hand-side vector” Q.

Solution procedure for the optimal control problem using the FE–SQP
approach:

(1) Calculate the constant matrices Q, M and L.

(2) Set i = 0. Start with an initial guess d (0).

(3) Calculate G ðiÞ
0 , F and K (i ) (standard in nonlinear finite element analysis).

(4) Calculate d̂ðiÞ, A (i ), P (i ) and B (i ).

(5) Solve the QP problem (31) to find the current control U.

(6) Calculate the current solution d ðiþ1Þ ¼ d̂ðiÞ þ A ðiÞU :

(7) Check convergence of Newton iteration (kR (i )k , e . If converged, stop.

(8) i ˆ i+1. Return to step 3.

Remark 2. The matrix P (i ) appearing in the quadratic form in (31) is
symmetric and positive semidefinite. Symmetry follows from (28) and from the
symmetry of M defined in (18). Positivity is obtained from the simple
calculation

v TPv ¼ v TATMAv ¼ ðAvÞTM ðAvÞ $ 0: ð32Þ

The first inequality in (32) follows from (28), and the last inequality follows
from the positivity of M, which can easily be shown. Strict positive-definiteness
of P (i ) is not obtained in general. QP algorithms for the problem (31) with a
symmetric positive semidefinite matrix P are widely known (Gill et al., 1981;
Luenberger, 1984).
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Remark 3. The matrix P and the operations in (28)–(30) are global in nature.
This may have an undesirable effect on the computational effort needed in
forming P and in the actual solution of the problem (31). However, this becomes
a difficulty only when N u (i.e. the dimension of the discrete control space) is
large. Typically, N u is much smaller than N y. In other words, the total number
of nodal control variables is much smaller than the total number of temperature
degrees of freedom. Thus, the computational effort associated with the matrix
P in (28) is not necessarily large, even when the discrete problem at hand is
large.

Remark 4. It is important to note that operations with the N y 2 dimensional
arrays are local in nature, and can be performed on the element level. The
matrices and vectors, Q, M, G ðiÞ

0 , F and K (i ), calculated in the proposed scheme,
are formed in practice by the assembly of analogous element-level matrices and
vectors, as usual in finite element analysis. The calculation of M d̂ in (30) is also
performed on the element level.

Remark 5. The QP problem (31) is solved in eachNewton iteration by using a
QP algorithm. All QP algorithms are iterative, and include some stopping
criteria (Gill et al., 1981; Luenberger, 1984). Since only the QP step in the last
Newton iteration yields the final optimal control, it is reasonable to modify the
QP stopping criterion tolerance during the Newton process, so that it becomes
tighter towards the end of this process. This would guarantee that the
computational effort associated with the QP step is not too large when the
solution d (i ) is not sufficiently close to the converged solution.

Remark 6. The shape functions cI are standard C 0 finite element functions,
e.g. linear on triangular elements or bilinear on quadrilateral elements. On the
other hand, the control shape functions fA need not be so regular. In the
formulation above they appear only in the definition of the matrix Q (see (16)),
and thus they are allowed to be piecewise-continuous. For example, one may use
piecewise-constant fAs where A indicates the midpoint of element A. This
enables one to represent, for example, a spatial “bang–bang control” as the
approximate solution. In fact, the fA may even be Dirac delta functions, since
the integral in (16) exists in this case. Then uh ¼ SAUAfA represents
“concentrated fluxes” with intensities UA applied at the control nodal points.

Remark 7. There are four main error sources involved in the FE–SQP
algorithm described above:

(a) the finite element discretization error associated with the variable y;

(b) the finite element discretization error associated with the control u;

(c) the error associated with the Newton iteration process;

(d) the error associated with the QP algorithm.

The first two errors are associated with the approximation of the continuous
problem by a discrete one, whereas the last two errors are defined purely on the
discrete (finite dimensional) level. Each of these errors is discussed separately
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in Givoli (1999), which also provides basic convergence testing of the scheme
for a one-dimensional model problem. A particularly interesting question is
that of the interaction between the Newton iteration process and the QP
minimization process; it is not obvious that this integration necessarily leads to
convergence. However, in Givoli and Patlashenko (2000) we show, albeit in a
simplified situation, that the Newton scheme combined with the QP solver
retains its quadratic convergence property. For more details, see Givoli (1999)
and Givoli and Patlashenko (2000).

3.4 The unconstrained case
Now we consider the case where there are no constraints except those related to
the required regularity of the control functions. (Regarding the latter
requirement, see Givoli, 1999.) In this case, the controls may be “constrained”
through penalty terms in the objective functional. Thus, we replace the
objective functional C[y ] in (4) by

C½y� ¼

Z
V

aðxÞðyðxÞ2 y0ðxÞÞ
2dx þ

Z
V

W ðxÞu2ðxÞdx; ð33Þ

where a(x ) $ 0, y0(x ) and W(x ) $ 0 are given functions. It is assumed that the
penalty weight W(x ) does not vanish identically.

The continuous-level optimal control problem is now: find y(x), x [ V
and u(x), x [ Gc, which satisfy the nonlinear equation (1), and the boundary
conditions (2) and (3), such that C[y] given by (33) is minimized.

We introduce the FE approximations (6) and (7). After some algebra, we
arrive at the following expressions for the discrete objective function, replacing
(17) and (27):

C h½d ;U � ¼ d TMd 2 2L Td þ U TNU ; ð34Þ

�Ch½U � ¼ U TP ðiÞU 2 2U TB ðiÞ þ U TNU : ð35Þ
Here

N ¼ ½NAB� ðN u £ N uÞ NAB ¼

Z
V

fAWfBdx; ð36Þ

and all the other arrays are defined as before. Since no constraints are imposed,
the minimization problem (31) becomes:

Given d ðiÞ; find min½U TP ðiÞU 2 2U TB ðiÞ þ U TNU �: ð37Þ

A necessary condition for a minimum is › �Ch=›UA ¼ 0, for A ¼ 1; . . .;N u:
Hence (37) yields the N u 2 dimensional linear system of equations,

ðP ðiÞ þ N ÞU ¼ B ðiÞ: ð38Þ

This linear system has to be solved anew in each Newton iteration.
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We now make a few remarks.
Remark 1. The matrix P (i )+N appearing in the linear system (38) is

symmetric and positive definite. Symmetry follows from the symmetry of P (i )

(see Remark 2 in Section 3.3) and from the symmetry of N defined in (36).
Positive definiteness follows from the fact that P (i ) is positive semi-definite (see
Remark 2 in Section 3.3), and from the positive-definiteness of N, which can
easily be shown. This guarantees that (38) can be solved uniquely.

Remark 2. The solution process is again described by the algorithm above,
with two differences. First, in step 1, the constant matrix N (cf. (36)) is
calculated too. This matrix is sparse and is formed in practice by the assembly
of analogous element-level matrices. Second, in step 5, the linear system (38) is
solved rather than a QP problem.

Remark 3. As in the constrained case (see Remark 6 of Section 3.3), the
control shape functions fA may be piecewise-continuous, e.g. piecewise
constant. However, as opposed to the constrained case, they cannot be as
singular as Dirac delta functions, since N defined by (36) precludes this
possibility. This does not mean that concentrated control fluxes cannot be
applied, but that the objective functional must be modified in that case.

Suppose, for example, that Ey = Eu, namely the y 2 nodes and the
u 2 nodes coincide (and hence N y = N u), and that the control is represented by
nodal concentrated forces. Then (1) is replaced by the equation

27�ðk7yÞ þ CRy4 ¼ f ðxÞ þ
I2Ey

X
bI U Idðx 2 xI Þ in V: ð39Þ

Here the UI are unknown constants, representing the magnitude of the
concentrated control fluxes, xI is the location of node I, d(x 2 xI) is the Dirac
delta with singularity at xI, and bI are given binary constants defined by

bI ¼
0; No control flux is applied at node I

1; Control flux is applied at node I

(
ð40Þ

In addition, (33) is replaced by the objective functional

C½y� ¼

Z
V

aðxÞðyðxÞ2 y0ðxÞÞ
2dx þ

I2Eu

X
WI U

2
I : ð41Þ

Here the WI are given non-negative constants (weights). Repeating the analysis
with (39) and (41), it is easy to verify that (38) still holds, with all the matrices
and vectors as defined previously, except that Q (cf. (16)) and N (cf. (36)) now
become the diagonal matrices Q = diag{bI} and N = diag{WI}. In deriving Q,
we made use of the “interpolation property” of finite element shape functions,
namely cI ðxJ Þ ¼ dIJ ; where dIJ is the Kronecker delta.

We remark that in practice the use of concentrated controllers may be
inefficient, especially in large structures where “precise control” is desired,
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since it may require a large number of control points. However,
computationally, the resulting scheme is especially simple and may serve for
quick checking of candidate control configurations, which may lead to a
prudent choice of the control region Vc.

4 Numerical examples
We apply the FE–SQP method to the problem of the optimal control of a
square radiating panel of dimensions 20 £ 20 made of an isotropic material. A
Cartesian coordinate system (x1,x2) is used, whose origin is in the lower left
corner of the panel. The nonlinear equation (1) holds in the square domain V,
with k = kI, I being the identity matrix, and a constant incident flux f. On the
boundary G the Dirichlet condition y = g (see (2)) is imposed. The objective
functional (4) is to be minimized, with a ; 1 and y0 a constant. Thus, the goal
of the control is to make the temperature in the panel as close as possible, in the
L2 sense, to the constant temperature y0. In all the numerical experiments that
follow we take CR = 5.67·10 2 8, g = 3008 and y0 = 3008.

A finite element mesh with 20 £ 20 = 400 bilinear square elements is used to
discretize the panel. The control function u is assumed to be constant in each
element. For the QP solution we use the Goldfarb–Idnani QP algorithm
(Goldfarb and Idnani, 1983). Initially we apply no constraints on the control,
but later we shall add the control constraint |u| # umax (see (5)).

First we try the trivial case where Vc = V (or b(x ) ; 1), namely all the
elements are control elements. The result that we get is that the temperature
everywhere is uniform and equal to y0 = 3008, that the discrete objective
function C h is zero, and that the control value is uniform in all the elements and
is equal to CRy4

0 2 f : This result is indeed expected and coincides with the
exact solution of the problem. This is evident from (4), where taking y ; y0

makes the objective function vanish, and from (1), where, with y ; y0 and
b ; 1 we get CRy4

0 ¼ f þ u: Of course, once we reduce the size of the control
region Vc, the resulting temperature distribution becomes non-uniform and the
cost C h cannot be made to vanish completely.

Now we consider the control configuration described in Figure 2. The control
flux region, characterized by the function b(x ) in equation (1), consists of a
rectangular “frame” of 32 elements as shown in the figure. Of course, in general
the control-region location and shape should be the product of optimization;
however, here we fix this region and solve the optimal-control problem as
defined previously (see discussion on this issue in Section 2.5). We set k = 10
and f = 140, and apply no constraints on the control. Figure 3 shows the
controlled and uncontrolled temperature variations along the line x2 = 10 which
is the central horizontal line in the panel.

As seen in the figure, while the uncontrolled temperature is everywhere
lower than 3008 and reaches a temperature close to 2308 in a large portion of the
panel, the temperature in the controlled panel is oscillatory around y0 = 3008.
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The optimal control is effective in that the value of the discrete objective
function C h (see (17)) is reduced from about C h = 1,302,000 without control to
C h = 437,000 with control, namely reduced by a factor of 3.

One may note the large temperature gradients obtained in the controlled
case. This is an “overshoot” effect; the control is quite local, and in bringing
the temperature in the panel to a higher level it has the side effect of increasing
the temperature in the immediate control region well beyond the target
temperature of 3008. This effect is even more pronounced in Figure 4, where the
controlled and uncontrolled temperature variations are shown along the line
x2 = 5. The large temperature gradients may be undesired in practice, but this

Figure 2.
Basic control flux region.
The control function u is

assumed to be constant in
each of the 32 elements
included in this region

Figure 3.
Controlled and

uncontrolled
temperature variation

along the central
horizontal line in the

panel, for k = 10,
f = 140, control region as
in Figure 2 and without

constraints
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is not a consideration that has been defined as part of the optimization problem.
One may prevent the appearance of large temperature gradients in the optimal
solution by modifying the objective functional (4) to include an appropriate
gradient term.

Next we set k = 100 and f = 700, and again use the control configuration of
Figure 2. With these parameters the uncontrolled temperature in the panel
becomes dominated by the incoming flux rather than by heat radiation. Figures
5 and 6 show the controlled and uncontrolled temperature variations along the
lines x2 = 10 and x2 = 5, respectively. As seen in the figures, the optimal control
is indeed very effective. The value of the discrete objective function C h is
reduced from C h = 114,802 without control to C h = 9615 with control, a
reduction by a factor of almost 12. Also, in this case local temperature changes
are not as sharp as in the previous case.

Now we keep the parameter values as in Figures 5 and 6, still with no control
constraints, and examine four different cases of the flux control region:

(a) control region is the entire rectangular “frame” shown in Figure 2;

(b) control region consists only of the two horizontal strips of the “frame”
shown in Figure 2 (between elements 126 and 266, and between elements
135 and 275);

(c) control region consists only of the four corner elements of this “frame”
(126, 266, 135 and 275);

(d) no control.

Figure 4.
Controlled and
uncontrolled
temperature variation
along the line x2 = 5, for
k = 10, f = 140, control
region as in Figure 2 and
without constraints
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Figure 5.
Controlled and

uncontrolled
temperature variation

along the line x2 = 10, for
k = 100, f = 700, control
region as in Figure 2 and

without constraints

Figure 6.
Controlled and

uncontrolled
temperature variation

along the line x2 = 5, for
k = 10, f = 140, control

region as in Figure 2 and
without constraints
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Table I compares the results obtained for these cases. For each case it gives the
amount of control area used (in percentage of the total area of the panel), the
value of the discrete objective function C h, and the temperature interval
(minimum and maximum temperature values). It is apparent that C h is
monotonely decreasing with increase of the control area, as expected. The effect
on the temperature interval is more subtle. For example, the size of this interval
is the same in cases C and D (278), although C h is much lower in case C; thus the
effect the control has in case C is in “shifting” the average temperatures to a
lower level.

Finally, we consider the effect of adding the control constraint |u| # umax.
We fix the control region to be that of case A (the entire rectangular “frame”).
Again the parameter values are as in Figures 5 and 6. Table II summarizes the
results obtained for different values of umax. The cases umax ! 1 and
umax ! 0 are the previously considered unconstrained and uncontrolled cases,
respectively.

It is clear that as the constraint becomes tighter the value of the discrete
objective function C h increases. This is the price that has to be paid for
lowering the control energy. The table also shows the number of active
constraints, Nac. Altogether there are 32 constraints, one for each element in the
control region (see Figure 2). However, only a partial set of the constraints may

Table I.
Comparison of results
obtained for the four
control-region cases. C

h

is the value of the
discrete objective
function

Case Control area (%) C h Temperature interval

A 8 9615 [295, 308]
B 4 15,640 [293, 310]
C 1 181,64 [284, 311]
D 0 114,802 [300, 327]

Table II.
Comparison of results
obtained for different
control constraints

umax C h Nac

! 1 9615 0
40 10,351 4
30 10,574 12
15 11,297 24
10 24,837 32
5 85,750 32
! 0 114,802 32

Note: The case umax ! 1 is the unconstrained case, while the case umax ! 0 is the uncontrolled
case. C h is the value of the discrete objective function, and Nac is the number of active constraints
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be active; an active constraint is one for which |u| # umax in the
corresponding element. As seen in Table II, the number of active constraints
increases gradually when the constraint becomes tighter, till finally all 32
constraints become active. Once this happens, any further decrease of umax

causes a dramatic increase in the objective function value (see last three lines of
Table II).

5 Conclusion
Motivated by applications in the thermal control of space structures, we have
presented a numerical scheme for the optimal control of the steady-state
temperature distribution in radiating panels using control heat sources. It has
been demonstrated that the Finite Element Sequential Quadratic Programming
(FE–SQP) approach is effective for this type of problem.

The proposed method has the advantage that it does not make use of adjoint
variables and thus leads to a simpler and more direct formulation with a
reduced number of unknown variables. The underlying formulation does not
employ the standard tools of classical control theory, but fits naturally into the
framework of computational continuum mechanics.

Future research may include the adaptation and application of the scheme to
other nonlinear optimal control problems in heat and fluid flow, in both two
and three dimensions. A particularly interesting and important area where the
scheme can be useful is that of the optimal control of processes involved in the
growth of crystals from the melt (see e.g. Givoli et al., 1996).
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